Feedback Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore
Feedback
menu
close

Post-war provision of climatic and natural resource ...

Shubravska, O.V. (Ed.). (2025). Post-war provision of climatic and natural resource resilience of agri-food production in Ukraine. State Organization "Institute for Economics and Forecasting of the National Academy of Sciences of Ukraine". Kyiv [in Ukrainian].

The authors: Olena ShubravskaLyubov MoldavanOlha PopovaLiudmyla DidkovskaKateryna ProkopenkoLiudmyla Udova

Year of publication: 2025

Pages: 260

ISBN  978-617-14-0440-3 (electronic edition)

Language: Ukrainian

Publisher: State Organization "Institute for Economics and Forecasting of the National Academy of Sciences of Ukraine"

Place: Kyiv

DOI https://doi.org/10.15407/978-617-14-0440-3

The monograph substantiates the main manifestations of the impact of climate change on Ukrainian agri-food production, identifies and assesses the risks of resilience and the potential for the former’s development in the context of increasing climate change, constrained natural resources and overcoming the consequences of the hostilities, and provides recommendations for preventing and mitigating the negative consequences of climate change on agricultural production in order to increase its resilience. In particular, the authors reveal and assess a set of main problems and corresponding risks for the resilience of agricultural production in the context of climate change and war in the economic, climatic, environmental, and social spheres, and present a system for assessing the resilience of Ukraine’s agricultural production. They also characterize the impact on crop yields from the combined effect of climatic and agrotechnical factors in terms of agroclimatic zones; identify the limitations and opportunities for national agri-food production and export in the context of Ukraine's accession to international initiatives on sustainable development and climate protection, and outline the essence of sustainable land use in the context of climate change and land degradation. The monograph describes various advantages of preserving and restoring wetlands, including those contributing to achieving global SDGs, and provides the details of using biomass for biofuels and prospects for the former’s production on degraded and low-productivity lands. 

The monograph is intended for scientists, teachers and students of universities, employees of ministries and departments, as well as the general public.

 

Show more Less

REFERENCES

Chapter 1

  1. Aggarwal, P. et al. (2022). Managing Climatic Risks in Agriculture. In R.Chand, P. Joshi, S. Khadka (Eds), Indian Agriculture Towards 2030. India Studies in Business and Economics. Springer. https://doi.org/10.1007/978-981-19-0763-0_4
  2. Challinor, A.J., Watson, J., Lobell, D.B., Howden, S.M., Smith, D.R. & Chhetri, N. (2014). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, (4), 287-291. http://dx.doi.org/10.1038/nclimate2153
  3. Di, Liu, Ashok, K., Mishra & Deepak, K. Ray (2020). Sensitivity of global major crop yields to climate variables: A non-parametric elasticity analysis. Science of The Total Environment, 748(2), 141431. https://doi.org/10.1016/scitotenv.2020.141431
  4. Dury, S., Bendjebbar, P., Hainzelin, E., Giordano, T. and Bricas, N., at al. (2019). Food Systems at risk. New trends and challenges. FAO–CIRAD–European Commission. Rome. https://doi.org/10.19182/agritrop/00080.
  5. Ghahramani, A. & Moore, A.D. (2016). Impact of climate changes on existing crop-livestock farming systems. Agricultural Systems, (146), 142-155. https://doi.org/10.1016/j.agsy.2016.05.011 
  6. Hermansen, M. & Röhn, O. (2017). Economic resilience: The usefulness of early warning indicators in OECD countries. OECD Journal: Economic Studies, (2016/1). https://doi.org/10.1787/eco_studies-2016-5jg2ppjrd6r3
  7. Howden, M., Soussana, J., Tubiello, F., Chhetri, N., Dunlop, M. & Meinke, H. (2007). Adapting agriculture to climate change. Proceedings of the National Academy of Sciences, 104(50), 19691-19696. https://doi.org/10.1073/pnas.0701890104
  8. Meuwissen, M.P.M., et al. (2019). A framework to assess the resilience of farming systems. Agricultural Systems, (176), 102656. https://doi.org/10.1016/j.agsy.2019.102656
  9. Nechyporenko, О. (2020). Risk management of global climate change in the agro-industrial complex of Ukraine. Ekonomika APK, (4), 6-16. https://doi.org/10.32317/2221-1055.202004006 [in Ukrainian].
  10. Prastiyo, S.E., Irham, Hardyastuti, S. et al (2020). How agriculture, manufacture, and urbanization induced carbon emission? The case of Indonesia. Environ Sci Pollut Res, (27), 42092–42103. https://doi.org/10.1007/s11356-020-10148-w
  11. Rosenzweig, C., Elliott, J. at al. (2013). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences, 111(9), 3268-3273. https://doi.org/10.1073/pnas.1222463110.
  12. Shubravska, O.V., & Prokopenko, K.O. (2017). Scenario assessments of the development of agricultural production in Ukraine under conditions of climate change and environmental constraints. Ekon. Ukr., (2), 49-60. https://nasu-periodicals.org.ua/index.php/economyukr/article/view/2017-02-4 [in Ukrainian].
  13. Shubravska, O.V. (Ed.). (2023). Challenges and consequences of Ukraine’s agro-food specialization in the world economy. National Academy of Sciences of Ukraine, SO "Institute for Economics and Forecasting of the NAS of Ukraine". Kyiv. https://ief.org.ua/publication/monohrafii/2023/vyklyky-ta-naslidky-ahroprodovolchoi-specializacii-ukrainy-u-svitoviy-ekonomici [in Ukrainian].
  14. Shubravska, O., & Prokopenko, K. (2013). Perspektyvy modernizatsii ahrarnoho sektora Ukrainy. Ekon. Ukr., (8), 64-76. http://nbuv.gov.ua/UJRN/EkUk_2013_8_7 [in Ukrainian].
  15. Zong, X., Xiaojie, Liu X., Chen, G. & Yin Y. (2022). A deep-understanding framework and assessment indicator system for climate-resilient agriculture. Ecological Indicators, (136), 108597. https://doi.org/10.1016/j.ecolind.2022.108597

Chapter 2

  1. Borodina, O., Prokopa, I., & Shubravska, O. (2025). Strategic guidelines for Ukraine’s agriculture and rural areas for the period until 2030: compliance with the European choice. Econ. Ukr., 68 (1 (758), 3-19. https://doi.org/10.15407/economyukr.2025.01.003 [in Ukrainian].
  2. Grumbine, R.E., & Xu, J., Ma, L. (2021). An Overview of the Problems and Prospects for Circular Agriculture in Sustainable Food Systems in the Anthropocene. Circular Agricultural Systems, (1), 3. https://doi.org/10.48130/CAS-2021-0003
  3. Gomez, San Juan, M., Harnett, S., Albinelli, I. (2022). Sustainable and circular bioeconomy in the biodiversity agenda: Opportunities to conserve and restore biodiversity in agrifood systems through bioeconomy practices. FAO. https://doi.org/10.4060/cc3417en
  4. Harder, R., Giampietro, M., & Smuklern, S. (2021). Towards a circular nutrient economy. A novel way to analyze the circularity of nutrient flows in food systems. Resources, Conservation and Recycling, (172), 105693. https://doi.org/10.1016/j.resconrec.2021.105693
  5. Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling, (127), 221-232. https://doi.org/10.1016/j.resconrec.2017.09.005.
  6. Kochanski, M., Thurid Lotz, M., & Korczak, K. (2024). Benchmarking circular economy measures in buildings along the 11R framework: A systematic review of quantified impacts on material use, energy consumption, GHG emissions, and costs. Journal of Cleaner Production, (485), 144337. https://doi.org/10.1016/j.jclepro.2024.144337
  7. Kowalski, Z., & Makara, A. (2021). The circular economy model used in the polish agro-food consortium: A case study. Journal of Cleaner Production, (284), 124751. https://doi.org/10.1016/j.jclepro.2020.124751
  8. Morseletto, P. (2020). Restorative and regenerative: Exploring the concepts in the circular economy. Journal of Industrial Ecology, (24), 763-773. https://doi.org/10.1111/jiec.12987
  9. Padilla-Rivera, A., Morales Brizard, M., Merveille, N., Güereca-Hernandez, L.P. (2024). Barriers, Challenges, and Opportunities in the Adoption of the Circular Economy in Mexico: An Analysis through Social Perception. Recycling, 9(5), 71. https://doi.org/10.3390/recycling9050071
  10. Popova, O. (2024). Strategy for agricultural and rural development in Ukraine until 2030 (the first public version of the draft): compliance with EU CAP requirements. Econ. Ukr., 67 (6(751), 49-70. https://doi.org/10.15407/economyukr.2024.06.049 [in Ukrainian].
  11. Gryshova, I., & Nesterova, K. (2021). The concept of a circular economy in the context of sustainable development. Ekonomika APK, (4), 88 – 94. https://doi.org/10.32317/2221-1055.202104088 [in Ukrainian].
  12. Shubravska, O., & Prokopenko, K. (2022). The Agricultural Sector of Ukraine in the Global Food Market: Prewar State and Post-war Prospects. Research on World Agricultural Economy. 3 (4), 693:1-11. http://dx.doi.org/10.36956/rwae.v3i4.693
  13. Shubravska, O., & Prokopenko, K. (2022). Ensuring food security of Ukraine: post-war context. Econ. Ukr., 65 (7(728), 21-42. https://doi.org/10.15407/economyukr.2022.07.021 [in Ukrainian].
  14. Shubravska, O., & Prokopenko, K. (2023). Risks and indicators of Ukraine’s agriculture resilience under climate change. Econ. Ukr., 66 (12(745), 41–67. https://doi.org/10.15407/economyukr.2023.12.041 [in Ukrainian].
  15. Vovk, V. (2022).  World experience of transition to circular economy models on the basis of use of waste-free technologies in AIС. Economic space, (179), 91-99. https://doi.org/10.32782/2224-6282/179-14 [in Ukrainian].
  16. Van Zanten, H.H.E., Herrero, M., Hal, O.V. et al. (2018). Defining a land boundary for sustainable livestock consumption. Glob Change Biol, (24), 4185–4194. https://doi.org/10.1111/gcb.14321 
  17. Van Zanten, H.H.E., Van Ittersum, M.K., & De Boer, I.J.M. (2019). The role of farm animals in a circular food system. Global Food Security, (21), 18-22. https://doi.org/10.1016/j.gfs.2019.06.003 
  18. Waltner-Toews, D. (2022). Circular Agriculture and Post-Normal Science. Circular Agricultural Systems, (2), 1. https://doi.org/10.48130/CAS-2022-0001.
  19. Weselek, A., Ehmann, A., Zikeli, S. et al. (2019). Agrophotovoltaic systems: applications, challenges, and opportunities. Agron. Sustain. Dev. (39), 35/ https://doi.org/10.1007/s13593-019-0581-3

Chapter 3

  1. Ceglar, A., Zampieri, M., Toreti, A., & Dentener, F. (2019). Observed northward migration of agro-climate zones in Europe will further accelerate under climate change. Earth's Future. (7), 1088–1101. https://doi.org/10.1029/2019EF001178
  2. Demyanenko, S., & Butko, V. (2012). Strategy for adapting Ukrainian agricultural enterprises to global climate change. Econ. Ukr., (6), 66-72. http://nbuv.gov.ua/UJRN/EkUk_2012_6_8 [in Ukrainian].
  3. Döring, T.F, & Reckling, M. (2018). Detecting global trends of cereal yield stability by adjusting the coefficient of variation. European Journal of Agronomy, (99), 30-36. https://doi.org/10.1016/j.eja.2018.06.007
  4. EL-Mansoury M., & Saleh S. (2017). Influence of Climatic Changes on Faba Bean (Vicia faba L.) Yield in North Nile Delta. Journal of Soil Sciences and Agricultural Engineering, 8 (1), 29-34. https://doi.org/10.21608/jssae.2017.37065 
  5. Frieler, K., Schauberger, B., Arneth, A., Balkovič, J., Chryssanthacopoulos, J., Deryng, D., Elliott, J., Folberth, C., Khabarov, N., Müller, C., Olin, S., Pugh, T.A.M., Schaphoff, S., Schewe, J., Schmid, E., Warszawski, L. and Levermann, A. (2017). Understanding the weather signal in national crop-yield variability. Earth's Future, (5), 605-616. https://doi.org/10.1002/2016EF000525
  6. Gregory, P.J., Johnson, S.N., Newton, A.C., & Ingram, J.S. (2009). Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany, 60 (10), 2827-2838. https://doi.org/10.1093/jxb/erp080
  7. Grytsyuk, P., & Bachyshyna, L. (2016). Influence of a change in climatic conditionson the dynamics of the crop yield of cereals in Ukraine. Econ. Ukr., 6 (655), 68-75. https://nasu-periodicals.org.ua/index.php/economyukr/article/view/2016-06-6/2016-06-6 [in Ukrainian].
  8. Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and climate extremes, (10), 4-10. https://doi.org/10.1016/j.wace.2015.08.001.
  9. Hurley, T., Koo, J. & Tesfaye, K. (2018). Weather risk: how does it change the yield benefits of nitrogen fertilizer and improved maize varieties in sub-Saharan Africa? Agricultural Economics, (49), 711-723. https://doi.org/10.1111/agec.12454
  10. Kryvoshein, O., Odnoletok, L., & Dzyuba L. (2016). Assessment of the impact of weather conditions and organizational and technological measures on the yield of winter wheat according to its climatic potential. Scientific works of the Ukrainian Research Hydrometeorological Institute, (269), 151-158. http://nbuv.gov.ua/UJRN/Npundgi_2016_269_17 [in Ukrainian].
  11. Lesk, C., Rowhani, P. & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, (529), 84-87. https://doi.org/10.1038/nature16467 
  12. Schierhorn, F., Hofmann, M., Gagalyuk, T. et al. (2021). Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages. Climatic Change, (169), 39. https://doi.org/10.1007/s10584-021-03272-0
  13. Schönhart M., Schauppenlehner T., Kuttner M., Kirchner M., & Schmid E. (2016). Climate change impacts on farm production, landscape appearance, and the environment: Policy scenario results from an integrated field-farm-landscape model in Austria. Agricultural Systems, (145), 39-50. https://doi.org/10.1016/j.agsy.2016.02.008 
  14. Webber, H., Ewert, F., Olesen, J.E. et al. (2018). Diverging importance of drought stress for maize and winter wheat in Europe. Nature Communications volume, (9), 4249. https://doi.org/10.1038/s41467-018-06525-2 
  15. Wright, B.D. (2011). The Economics of Grain Price Volatility. Applied Economic Perspectives and Policy, (33), 32-58. https://doi.org/10.1093/aepp/ppq033.

Chapter 4

  1. European Commission. (2023). Ukraine 2023 Report Accompanying the document Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. https://neighbourhood-enlargement.ec.europa.eu/system/files/2023-11/SWD_2023_699%20Ukraine%20report.pdf
  2. European Commission (2024, 26 Mar). Speech by President von der Leyen at the Annual Conference of the Forum for the Future of Agriculture. https://ec.europa.eu/commission/presscorner/detail/en/speech_24_1726
  3. European Commission (2025, 19 February). Vision for Agriculture and Food. Shaping the future of farming and the agri-food sector for future generations in Europe. https://agriculture.ec.europa.eu/overview-vision-agriculture-food/vision-agriculture-and-food_en
  4. EU Voluntary Review on progress in the implementation of the 2030 Agenda for Sustainable Development. SWD/2023/700 final. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52023SC0700&qid=1696529591065
  5. Prazian, M. (2023, 17 March). Resilience for Better Sustainability. https://doi.org/10.32918/nrs.2023.1(97).08
  6. Regulation (EU) 2024/1468 of the European Parliament and of the Council of 14 May 2024 amending Regulations (EU) 2021/2115 and (EU) 2021/2116 as regards good agricultural and environmental condition standards, schemes for climate, environment and animal welfare, amendment of the CAP Strategic Plans, review of the CAP Strategic Plans and exemptions from controls and penalties. https://eur-lex.europa.eu/eli/reg/2024/1468/oj/eng
  7. Popova, O., & Pankratova, L. (2023). Green architecture of CAP of the EU: landmarks for development during the post-war reconstruction of Ukraine. Econ. Ukr., (8), 78-96. https://doi.org/10.15407/econo myukr.2023.08.078 [in Ukrainian].
  8. Popova, O. (2025). Conditionality of farmer support under the EU CAP: changes and lessons for Ukraine. Econ. Ukr., 68 (7 (764), 67-88. https://doi.org/10.15407/economyukr.2025.07.067 [in Ukrainian].

Chapter 5

  1. Dorosh, O. (2015). Methodological approaches to the development of land management projects for establishing (changing) the boundaries of administrative-territorial units. Land management, cadastre, and land monitoring, (1), 44-54 http://nbuv.gov.ua/UJRN/Zemleustriy_2015_1_8 [in Ukrainian]. 
  2. Duka, А. (2023). State Regulation and Control in the Sphere of Land Resources Use in Ukraine. Problems of Modern Transformations. Series: Law, Public Management and Administration, (9). https://doi.org/10.54929/2786-5746-2023-9-02-15 [in Ukrainian].
  3. Dobrovolska, O., & Rondova, M. (2021). Forecasting bankruptcy as a method for assessing the financial condition of the company. Agrosvit, (20), 40-45. https://doi.org/10.32702/2306-6792.2021.20.40 [in Ukrainian].
  4. EU (2020, 20 May). EU Biodiversity Strategy for 2030: Bringing nature back into our lives. Communication from the Commission to the European Parliament, the Council, the European economic and social Committee and the Committee of the regions. COM(2020) 380 final. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52020DC0380 
  5. Golyan, V., Sakal, O., & Holub, O. (2015). Agroforestry as an effective means of protection water bodies against pollution by nitrates from agricultural sources: institutional preconditions and financial mechanisms for augmentation. Аgrоsvіt, (22), 3-10. http://www.agrosvit.info/pdf/22_2015/2.pdf [in Ukrainian].
  6. Laghlimi, M., Baghdad, B., Hadi, H., & Bouabdli, A. (2015). Phytoremediation Mechanisms of Heavy Metal Contaminated Soils: A Review. Open Journal of Ecology, (5), 375-388. https://doi.org/10.4236/oje.2015.58031.
  7. Lin, Brenda. (2011). Resilience in Agriculture through Crop Diversification: Adaptive Management for Environmental Change. BioScience, (61), 183-193. https://doi.org/10.1525/bio.2011.61.3.4 
  8. Logvinenko, M., & Kadala, V. (2021). State control of land use and protection as an aspect of public administration in the sphere of land use. Legal Scientific Electronic Journal, (3), 408-410. https://doi.org/10.32782/2524-0374/2021-3/103 [in Ukrainian].
  9. Augère-Granier, Marie-Laure. (2020). Agroforestry in the European Union. EPRS European Parliamentary Research Service. https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/651982/EPRS_BRI(2020)651982_EN.pdf 
  10. Ministry of Environmental Protection and Natural Resources of Ukraine (2018). Ukraine's Low Carbon Development Strategy until 2050. https://mepr.gov.ua/wp-content/uploads/2023/07/LEDS_ua_last.pdf [in Ukrainian].
  11. Paz-Ferreiro, J., Lu, H., Fu, S., Mendez, A., & Gasco, G. (2014). Use of Phytoremediation and Biochar to Remediate Heavy Metal Polluted Soils: A Review. Solid Earth, (5), 65-75. https://doi.org/10.5194/se-5-65-2014 
  12. Pokorný, J. et al. (2016). Indirect and Direct Thermodynamic Effects of Wetland Ecosystems on Climate. In J. Vymazal (Ed.), Natural and Constructed Wetlands. Springer, Cham. https://doi.org/10.1007/978-3-319-38927-1_7
  13. Redlich, S., Martin, E., & Steffan-Dewenter, I. (2018). Landscape-level crop diversity benefits biological pest control. J. Appl. Ecol., (55), 2419-2428. https://doi.org/10.1111/1365-2664.13126
  14. Shum, I. (2013). Silvicultural reclamation: national and international experience. Scientific Bulletin of the National Forestry University of Ukraine, (23.15), 91-101. https://nv.nltu.edu.ua/Archive/2013/23_15/91_Szu.pdf [in Ukrainian]. 
  15. Strobl, E. (2022). Preserving local biodiversity through crop diversification. Am. J. Agric. Econ., (104), 1140-1174. https://doi.org/10.1111/ajae.12265/
  16. Turenko, V., Bilyk, M., Stankevich, S., & Zabrodina, I. (2023). Modern pesticides and technical means of their application: textbook. Zhytomyr: Ruta. https://repo.btu.kharkiv.ua/items/a380322f-2c40-47f7-86b0-9b7211000aad [in Ukrainian].

Chapter 6

  1. Didkovska, L. (2024). Water Conflicts in Ukraine and in the World. Acta Academiae Beregsasiensis. Economics, (5), 69-85. https://doi.org/10.58423/2786-6742/2024-5 [in Ukrainian].
  2. European Commission (2024a). Strategic Dialogue on the Future of EU Agriculture. https://agriculture.ec.europa.eu/document/download/171329ff-0f50-4fa5-946f-aea11032172e_en?filename=strategic-dialogue-report-2024_en.pdf 
  3. European Commission (2024b). Ukraine 2024 Report. https://neighbourhood-enlargement.ec.europa.eu/document/download/1924a044-b30f-48a2-99c1-50edeac14da1_en?filename=Ukraine%20Report%202024.pdf 
  4. FAO. (2024). The State of World Fisheries and Aquaculture 2024 - Blue Transformation in action. Rome. https://doi.org/10.4060/cd0683en 
  5. Kolomiets, S., & Pylyіpchuk, I. (2017). Ecologically balanced use of drained peat lands in the field of land reclamation. Land reclamation and water management, (105), 67 [in Ukrainian].
  6. Neyter R., Zorya S. & Muliar, O. (2024). Agricultural War Damages, Losses, and Needs Review. KSE Agrocenter. URL: https://kse.ua/wp-content/uploads/2024/02/RDNA3_eng.pdf
  7. Romashchenko, M., Faybishenko, B., Onopriienko, D., Hapich, H., Novitskyi, R., Dent, D., … Roubik, H. (2025). Prospects for restoration of Ukraine’s irrigation system. Water International, (1-17). https://doi.org/10.1080/02508060.2025.2472718
  8. Romashchenko, M., Husyev, Y., Shatkovskyi, A., Saidak, R., Yatsyuk, M., Shevchenko, A., & Matiash, T. (2020). Impact of climate change on water resources and agricultural production. Land Reclamation and Water Management, (1), 5-22. https://doi.org/10.31073/mivg202001-235
  9. Shubravska, O., Popova, O., & Prokopenko, K. (2024). Consequences of the destruction at the Kakhovka Hydroelectric Power Plant for agriculture in the South of Ukraine. Acta Sci. Pol. Administratio Locorum, 23(4), 457-466. https://doi.org/10.31648/aspal.9883

Chapter 7

  1. Dekovets, V., & Kulik, M. (2020). Ecological features and agricultural measures for growing giant miscanthus biomass to ensure energy efficiency in rural areas. In T. Chaika, I. Yasnolob, O. Gorb (Eds.), Energy efficiency and energy independence of rural areas: prerequisites for formation and functioning (pp. 102-114). Poltava: Publishing House PP "Astraya". https://dspace.pdau.edu.ua/handle/123456789/8791 [in Ukrainian].
  2. Designing a carbon-neutral energy system of Ukraine: increasing the uptake of biofuels and biomass in Ukraine. https://unece.org/sites/default/files/2022-10/V.%20Kotsiuba%20UNECE%20-%20RES%2C%20Biofuels%20Ukraine%20%281%29.pdf
  3. Furman, I., & Ksenchyn, D. (2024). Development of bioenergy in the context of ensuring energy security of Ukraine. Economy and Society, (61). https://doi.org/10.32782/2524-0072/2024-61-41 [in Ukrainian].
  4. Geletukha, G., & Zheliezna, T. (2021). Prospects for Bioenergy Development in Ukraine: Roadmap until 2050. Ecological Engineering & Environmental Technology, 22(5), 73-81. https://doi.org/10.12912/27197050/139346
  5. Kaletnik, G., & Honcharuk, I. (2020). Economic calculations of the potential of renewable bioenergy production in formation of energy independence of the agro-industrial complex. Ekonomika APK, (9), 6-16. https://doi.org/10.32317/2221-1055.202009006 [in Ukrainian].
  6. Kaletnik, G., Pryshliak, N., Khvesyk, M., & Khvesyk, J. (2022). Legal regulations of biofuel production in Ukraine. Polityka energetyczna, 25(1), 125-142. https://doi.org/10.33223/epj/146411
  7. Lutkovska, S., & Zelenchuk, N. (2021). Bioenergy development in Ukraine – energy and economic security in conditions of sustainable development. Efektyvna ekonomika, (12).  https://doi.org/10.32702/2307-2105-2021.12.2 [in Ukrainian].
  8. National Energy and Climate Plan (NECP) for the period up to 2030. https://zakon.rada.gov.ua/laws/show/587-2024-%D1%80#Text [in Ukrainian].
  9. Parkhomets, М., Uniiat, L., Chornyi, Р., Chorna, Н., & Hradovyi, V. (2023). Efficiency of production and processing of rapeseed for biodiesel in Ukraine. Agricultural and Resource Economics: International Scientific E-Journal, 9 (2), 245-275. https://doi.org/10.51599/are.2023.09.02.11 [in Ukrainian].
  10. Pimenow, S., Pimenowa, O., Moldavan, L., Udova, L., Wasilewski, M., & Wasilewska, N. (2025). Transforming Agriculture into Energy: Unlocking Ukraine’s Bioenergy Potential for Sustainable Post-Conflict Recovery. Energies, (18), 1212. https://doi.org/10.3390/en18051212
  11. Pimenow, S., Pimenowa, O., & Prus, P. (2024). Challenges of Artificial Intelligence Development in the Context of Energy Consumption and Impact on Climate Change. Energies, (17), 5965. https://doi.org/10.3390/en17235965
  12. Prokopenko, K., & Udova. L. (2023). (Post)war prospects of growing niche crops in the agricultural sector. Ekon. prognozuv., (2), 118-133. https://doi.org/10.15407/eip2023.02.118 [in Ukrainian].
  13. Röder, M., Mohr, A., & Liu. (2020).Sustainable bioenergy solutions to enable development in low- and middle-income countries beyond technology and energy access. Biomass and Bioenergy, (143). https://doi.org/10.1016/j.biombioe.2020.105876
  14. Skrypnyk, A., Namiasenko, Yu., & Sabishchenko, O. (2018). The Power Sector of Ukraine: Collapse or Survival. Problemy ekonomiky, 1 (35), 122-134 [in Ukrainian].
  15. Udova, L. (2024). Stan and prospects of energy use of agrobiomass taking into account climate change. In V.V. Khrapkin and K. V. Pichik (Eds.), Transformatsiia praktyky upravlinnia innovatsiinym rozvytkom sotsialno-ekonomichnykh system (pp. 483-490). Kyiv-Mohyla Academy Publishing House. https://ekmair.ukma.edu.ua/handle/123456789/29547; https://doi.org/10.35668/978-966-518-844-5 [in Ukrainian].
  16. Udova, L., & Haievyi, A. (2022). Small business in the agricultural sector of Ukraine's economy: problems and prospects for development in wartime conditions. In D. Nascimento, G. Starchenko (Eds.), International Partnership and Cooperation of Ukraine in Wartime (pp. 122-133). University of Coimbra, Portugal - Chernihiv: REICST. https://doi.org/10.54929/monograph-02-2022-01-09 [in Ukrainian].
  17. Udova, L., & Prokopenko, K. (2018). The niche crops as a new prospective guideline for small farms. Ekon. prognozuv., (3), 102-117. https://doi.org/10.15407/eip2018.03.102 [in Ukrainian].
Less